Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.636
Filtrar
1.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607082

RESUMO

Basal forebrain cholinergic dysfunction, most likely linked with tau protein aggregation, is a characteristic feature of Alzheimer's disease (AD). Recent evidence suggests that tau protein is a putative target for the treatment of dementia, and the tau aggregation inhibitor, hydromethylthionine mesylate (HMTM), has emerged as a potential disease-modifying treatment. However, its efficacy was diminished in patients already receiving approved acetylcholinesterase inhibitors. In this study, we ask whether this negative interaction can also be mimicked in experimental tau models of AD and whether the underlying mechanism can be understood. From a previous age profiling study, 6-month-old line 1 (L1) tau transgenic mice were characterized by a severe reduction in several cholinergic markers. We therefore assessed whether long-term pre-exposure with the acetylcholinesterase inhibitor rivastigmine alone and in conjunction with the tau aggregation inhibitor HMTM can reverse cholinergic deficits in L1. Rivastigmine and HMTM, and combinations of the two compounds were administered orally for 11 weeks to both L1 and wild-type mice. The brains were sectioned with a focus on the basal forebrain, motor cortex and hippocampus. Immunohistochemical staining and quantification of choline acetyltransferase (ChAT), tyrosine kinase A (TrkA)-positive neurons and relative optical intensity (ROI) for vesicular acetylcholine transporter (VAChT), and acetylcholinesterase (AChE) reactivity confirmed reversal of the diminished cholinergic phenotype of interneurons (nucleus accumbens, striatum) and projection neurons (medial septum, nucleus basalis magnocellularis) by HMTM, to a greater extent than by rivastigmine alone in L1 mice. Combined administration did not yield additivity but, in most proxies, led to antagonistic effects in which rivastigmine decreased the benefits shown with HMTM alone. Local markers (VAChT and AChE) in target structures of the basal forebrain, motor cortex and hippocampal CA3 seemed to be normalized by HMTM, but not by rivastigmine or the combination of both drugs. HMTM, which was developed as a tau aggregation inhibitor, strongly decreased the tau load in L1 mice, however, not in combination with rivastigmine. Taken together, these data confirm a cholinergic phenotype in L1 tau transgenic mice that resembles the deficits observed in AD patients. This phenotype is reversible by HMTM, but at the same time appears to be subject to a homeostatic regulation induced by chronic pre-treatment with an acetylcholinesterase inhibitor, which interferes with the efficacy of HMTM. The strongest phenotypic reversal coincided with a normalization of the tau load in the cortex and hippocampus of L1, suggesting that tau accumulation underpins the loss of cholinergic markers in the basal forebrain and its projection targets.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Camundongos , Animais , Lactente , Rivastigmina/farmacologia , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Neuroproteção , Neurônios Colinérgicos/metabolismo , Tauopatias/tratamento farmacológico , Colinérgicos , Camundongos Transgênicos
3.
Acta Neuropathol ; 147(1): 65, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557897

RESUMO

Human microglia are critically involved in Alzheimer's disease (AD) progression, as shown by genetic and molecular studies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 32 human donors along progression of AD pathology, both in time-from early to late pathology-and in space-from entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)-with biochemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, including microglia. While the majority of microglia are similar across brain regions, we identified a specific subset unique to EC which may contribute to the early tau pathology present in this region. We calculated conversion of microglia subtypes to diseased states and compared conversion patterns to those from AD animal models. Targeting genes implicated in this conversion, or their upstream/downstream pathways, could halt gene programs initiated by early tau progression. We used expression patterns of early tau progression to identify genes whose expression is reversed along spreading of spatial tau pathology (EC > ITG > PFC > V2 > V1) and identified their potential involvement in microglia subtype conversion to a diseased state. This study provides a data resource that builds on our knowledge of myeloid cell contribution to AD by defining the heterogeneity of microglia and brain macrophages during both temporal and regional pathology aspects of AD progression at an unprecedented resolution.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Transcriptoma , Encéfalo/patologia , Células Mieloides/patologia , Microglia/patologia , Peptídeos beta-Amiloides/metabolismo
4.
Brain Nerve ; 76(4): 343-351, 2024 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-38589279

RESUMO

A definite diagnosis of neurodegenerative diseases is required for neuropathological examination during an autopsy. Each neurodegenerative disease has specific vulnerable regions and affected systems (system degeneration), and is typified by an accumulation of abnormal protein with the formation of characteristic morphological aggregates in the nerve and glial cells, called proteinopathy. The most common neurodegenerative diseases are tauopathy, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD); α-synucleinopathy, including multiple system atrophy (MSA); and TAR DNA-binding protein of 43 kDa (TDP-43) proteinopathy, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). PSP and CBD show characteristic tau-positive astrocytic inclusions known as tufted astrocytes and astrocytic plaques, respectively. PiD shows tau-positive neuronal inclusions termed Pick bodies. MSA is characterized by α-synuclein-positive oligodendroglial inclusions, called glial cytoplasmic inclusions. ALS- and FTLD-TDP show TDP-43-positive neuronal inclusions, such as skein-like and round inclusions. Huntington's disease shows polyglutamine-positive neuronal inclusions, and Creutzfeldt-Jakob disease shows diffuse deposition of granular prions in the neuropil. The atypical proteins in these diseases have abnormal conformational properties. A comprehensive comparison of the clinical findings and neuropathological observations, including neuroanatomy and images acquired during life, is important to improve the sensitivity of clinical diagnosis.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Atrofia de Múltiplos Sistemas , Doença de Pick , Tauopatias , Humanos , Proteínas tau/metabolismo , Esclerose Amiotrófica Lateral/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Doença de Pick/metabolismo , Doença de Pick/patologia , Proteínas de Ligação a DNA/metabolismo
5.
Bioorg Chem ; 146: 107324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569322

RESUMO

Recently, glycogen synthase kinase-3ß (GSK-3ß) has been considered as a critical factor implicated in Alzheimer's disease (AD). In a previous work, a 3D pharmacophore model for GSK-3ß inhibitors was created and the results suggested that derivative ZINC67773573, VIII, may provide a promising lead for developing novel GSK-3ß inhibitors for the AD's treatment. Consequently, in this work, novel series of quinolin-2-one derivatives were synthesized and assessed for their GSK-3ß inhibitory properties. In vitro screening identified three compounds: 7c, 7e and 7f as promising GSK-3ß inhibitors. Compounds 7c, 7e and 7f were found to exhibit superior inhibitory effect on GSK-3ß with IC50 value ranges between 4.68 ± 0.59 to 8.27 ± 0.60 nM compared to that of staurosporine (IC50 = 6.12 ± 0.74 nM). Considerably, compounds 7c, 7e and 7f effectively lowered tau hyperphosphorylated aggregates and proving their safety towards the SH-SY5Y and THLE2 normal cell lines. The most promising compound 7c alleviated cognitive impairments in the scopolamine-induced model in mice. Compound 7c's activity profile, while not highly selective, may provide a starting point and valuable insights into the design of multi-target inhibitors. According to the ADME prediction results, compounds 7c, 7e and 7f followed Lipinski's rule of five and could almost permeate through the BBB. Molecular docking simulations showed that these compounds are well accommodated in the ATP binding site interacting by its quinoline-2-one ring through hydrogen bonding with the key amino acids Asp133 and Val135 at the hinge region. The findings of this study suggested that these new compounds may have potential as anti-AD drugs targeting GSK-3ß.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Simulação de Acoplamento Molecular , Glicogênio Sintase Quinase 3 beta/metabolismo , Farmacóforo , Fosforilação , Proteínas tau/metabolismo
6.
Alzheimers Res Ther ; 16(1): 70, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575959

RESUMO

BACKGROUND: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-ß protein (Aß) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aß pathology and tauopathy in vivo. METHODS: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model of a disease (Krabbe A) characterized by pronounced lysosomal dysfunction. Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. RESULTS: Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aß, manifesting as intense, exclusively intracellular aggregates; extracellular Aß deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatD-KO mice were found to develop prominent tauopathy by just ∼ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology present in aged JNPL3 mice. CatD-KO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (∼ 1250%) are present in CatD-KO mice but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aß42. CONCLUSIONS: Our findings support a major role for CatD in the proteostasis of both Aß and tau in vivo. To our knowledge, the CatD-KO mouse line is the only model to develop detectable Aß accumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aß42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.


Assuntos
Doença de Alzheimer , Tauopatias , Idoso , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Catepsina D , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo
7.
Neurotox Res ; 42(2): 23, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578482

RESUMO

Alzheimer's disease (AD) involves a neurodegenerative process that has not yet been prevented, reversed, or stopped. Continuing with the search for natural pharmacological treatments, flavonoids are a family of compounds with proven neuroprotective effects and multi-targeting behavior. The American genus Dalea L. (Fabaceae) is an important source of bioactive flavonoids. In this opportunity, we tested the neuroprotective potential of three prenylated flavanones isolated from Dalea species in a new in vitro pre-clinical AD model previously developed by us. Our approach consisted in exposing neural cells to conditioned media (3xTg-AD ACM) from neurotoxic astrocytes derived from hippocampi and cortices of old 3xTg-AD mice, mimicking a local neurodegenerative microenvironment. Flavanone 1 and 3 showed a neuroprotective effect against 3xTg-AD ACM, being 1 more active than 3. The structural requirements to afford neuroprotective activity in this model are a 5'-dimethylallyl and 4'-hydroxy at the B ring. In order to search the mechanistic performance of the most active flavanone, we focus on the flavonoid-mediated regulation of GSK-3ß-mediated tau phosphorylation previously reported. Flavanone 1 treatment decreased the rise of hyperphosphorylated tau protein neuronal levels induced after 3xTg-AD ACM exposure and inhibited the activity of GSK-3ß. Finally, direct exposure of these neurotoxic 3xTg-AD astrocytes to flavanone 1 resulted in toxicity to these cells and reduced the neurotoxicity of 3xTg-AD ACM as well. Our results allow us to present compound 1 as a natural prenylated flavanone that could be used as a precursor to development and design of future drug therapies for AD.


Assuntos
Doença de Alzheimer , Flavanonas , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Transgênicos , Proteínas tau/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Fosforilação , Peptídeos beta-Amiloides/metabolismo
8.
Nat Aging ; 4(4): 453-463, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38641654

RESUMO

Slowing neurodegenerative disorders of late life has lagged behind progress on other chronic diseases. But advances in two areas, biochemical pathology and human genetics, have now identified early pathogenic events, enabling molecular hypotheses and disease-modifying treatments. A salient example is the discovery that antibodies to amyloid ß-protein, long debated as a causative factor in Alzheimer's disease (AD), clear amyloid plaques, decrease levels of abnormal tau proteins and slow cognitive decline. Approval of amyloid antibodies as the first disease-modifying treatments means a gradually rising fraction of the world's estimated 60 million people with symptomatic disease may decline less or even stabilize. Society is entering an era in which the unchecked devastation of AD is no longer inevitable. This Perspective considers the impact of slowing AD and other neurodegenerative disorders on the trajectory of aging, allowing people to survive into late life with less functional decline. The implications of this moment for medicine and society are profound.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/tratamento farmacológico , Proteínas tau/metabolismo , Envelhecimento/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(15): e2320456121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568974

RESUMO

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high ß-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting ß-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.


Assuntos
Príons , Tauopatias , Humanos , Proteínas tau/metabolismo , Tauopatias/metabolismo , Isoformas de Proteínas/metabolismo , Príons/metabolismo , Peptídeos , Aminoácidos
10.
Sci Rep ; 14(1): 8581, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615036

RESUMO

Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and it is characterized by the intracellular and extracellular accumulation of α-synuclein (α-syn) and Tau, which are major components of cytosolic protein inclusions called Lewy bodies, in the brain. Currently, there is a lack of effective methods that preventing PD progression. It has been suggested that the plasminogen activation system, which is a major extracellular proteolysis system, is involved in PD pathogenesis. We investigated the functional roles of plasminogen in vitro in an okadaic acid-induced Tau hyperphosphorylation NSC34 cell model, ex vivo using brains from normal controls and methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, and in vivo in a widely used MPTP-induced PD mouse model and an α-syn overexpression mouse model. The in vitro, ex vivo and in vivo results showed that the administered plasminogen crossed the blood‒brain barrier (BBB), entered cells, and migrated to the nucleus, increased plasmin activity intracellularly, bound to α-syn through lysine binding sites, significantly promoted α-syn, Tau and TDP-43 clearance intracellularly and even intranuclearly in the brain, decreased dopaminergic neurodegeneration and increased the tyrosine hydroxylase levels in the substantia nigra and striatum, and improved motor function in PD mouse models. These findings indicate that plasminogen plays a wide range of pivotal protective roles in PD and therefore may be a promising drug candidate for PD treatment.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Plasminogênio , Animais , Camundongos , alfa-Sinucleína , Modelos Animais de Doenças , Proteínas de Ligação a DNA/metabolismo , Dopamina , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Plasminogênio/metabolismo , Serina Proteases , Proteínas tau/metabolismo , Neurônios Dopaminérgicos/patologia
11.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631765

RESUMO

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Assuntos
Doença de Pick , Tauopatias , Masculino , Humanos , Feminino , Proteínas tau/metabolismo , Doença de Pick/genética , Haplótipos , Estudos de Associação Genética
12.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631766

RESUMO

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Masculino , Feminino , Humanos , Adulto , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/patologia
13.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565295

RESUMO

The accumulation of amyloid-ß (Aß) and hyperphosphorylated-tau (hp-tau) are two classical histopathological biomarkers in Alzheimer's disease (AD). However, their detailed interactions with the electrophysiological changes at the meso- and macroscale are not yet fully understood. We developed a mechanistic multiscale model of AD progression, linking proteinopathy to its effects on neural activity and vice-versa. We integrated a heterodimer model of prion-like protein propagation and a brain network model of Jansen-Rit neural masses derived from human neuroimaging data whose parameters varied due to neurotoxicity. Results showed that changes in inhibition guided the electrophysiological alterations found in AD, and these changes were mainly attributed to Aß effects. Additionally, we found a causal disconnection between cellular hyperactivity and interregional hypersynchrony contrary to previous beliefs. Finally, we demonstrated that early Aß and hp-tau depositions' location determine the spatiotemporal profile of the proteinopathy. The presented model combines the molecular effects of both Aß and hp-tau together with a mechanistic protein propagation model and network effects within a closed-loop model. This holds the potential to enlighten the interplay between AD mechanisms on various scales, aiming to develop and test novel hypotheses on the contribution of different AD-related variables to the disease evolution.


Assuntos
Doença de Alzheimer , Deficiências na Proteostase , Humanos , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neuroimagem/métodos , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Progressão da Doença
14.
Acta Neuropathol Commun ; 12(1): 54, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581050

RESUMO

The disease-specific accumulation of pathological proteins has long been the major focus of research in neurodegenerative diseases (ND), including Alzheimer's disease (AD) and related dementias (RD), but the recent identification of a multitude of genetic risk factors for ND in immune-associated genes highlights the importance of immune processes in disease pathogenesis and progression. Studies in animal models have characterized the local immune response to disease-specific proteins in AD and ADRD, but due to the complexity of disease processes and the co-existence of multiple protein pathologies in human donor brains, the precise role of immune processes in ND is far from understood. To better characterize the interplay between different extracellular and intracellular protein pathologies and the brain's intrinsic immune system in ND, we set out to comprehensively profile the local immune response in postmortem brain samples of individuals with "pure" beta-Amyloid and tau pathology (AD), "pure" α-Synuclein pathology in Lewy body diseases (LBD), as well as cases with Alzheimer's disease neuropathological changes (ADNC) and Lewy body pathology (MIX). Combining immunohistochemical profiling of microglia and digital image analysis, along with deep immunophenotyping using gene expression profiling on the NanoString nCounter® platform and digital spatial profiling on the NanoString GeoMx® platform we identified a robust immune activation signature in AD brain samples. This signature is maintained in persons with mixed pathologies, irrespective of co-existence of AD pathology and Lewy body (LB) pathology, while LBD brain samples with "pure" LB pathology exhibit an attenuated and distinct immune signature. Our studies highlight disease- and brain region-specific immune response profiles to intracellular and extracellular protein pathologies and further underscore the complexity of neuroimmune interactions in ND.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doenças Neurodegenerativas , Animais , Humanos , Doença de Alzheimer/patologia , Doenças Neurodegenerativas/patologia , Proteínas tau/metabolismo , alfa-Sinucleína/metabolismo , Doença por Corpos de Lewy/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia
15.
PLoS One ; 19(4): e0299637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625863

RESUMO

Alzheimer disease (AD) is the most common form of dementia. The cause of the disease is unknown, and it has no cure. Symptoms include cognitive decline, memory loss, and impairment of daily functioning. The pathological hallmarks of the disease are aggregation of plaques of amyloid-ß (Aß) and neurofibrillary tangles of tau proteins (τ), which can be detected in PET scans of the brain. The disease can remain asymptomatic for decades, while the densities of Aß and τ continue to grow. Inflammation is considered an early event that drives the disease. In this paper, we develop a mathematical model that can produce simulated patterns of (Aß,τ) seen in PET scans of AD patients. The model is based on the assumption that early inflammations, R and [Formula: see text], drive the growth of Aß and τ, respectively. Recently approved drugs can slow the progression of AD in patients, provided treatment begins early, before significant damage to the brain has occurred. In line with current longitudinal studies, we used the model to demonstrate how to assess the efficacy of such drugs when given years before the disease becomes symptomatic.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons , Modelos Teóricos
16.
Sci Rep ; 14(1): 7946, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575622

RESUMO

Amyloid-beta (Aß) toxic oligomers are critical early players in the molecular pathology of Alzheimer's disease (AD). We have developed a Soluble Oligomer Binding Assay (SOBA-AD) for detection of these Aß oligomers that contain α-sheet secondary structure that discriminates plasma samples from patients on the AD continuum from non-AD controls. We tested 265 plasma samples from two independent cohorts to investigate the performance of SOBA-AD. Testing was performed at two different sites, with different personnel, reagents, and instrumentation. Across two cohorts, SOBA-AD discriminated AD patients from cognitively unimpaired (CU) subjects with 100% sensitivity, > 95% specificity, and > 98% area under the curve (AUC) (95% CI 0.95-1.00). A SOBA-AD positive readout, reflecting α-sheet toxic oligomer burden, was found in AD patients, and not in controls, providing separation of the two populations, aside from 5 SOBA-AD positive controls. Based on an earlier SOBA-AD study, the Aß oligomers detected in these CU subjects may represent preclinical cases of AD. The results presented here support the value of SOBA-AD as a promising blood-based tool for the detection and confirmation of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Estrutura Secundária de Proteína , Testes Hematológicos , Biomarcadores , Disfunção Cognitiva/patologia , Proteínas tau/metabolismo
17.
Acta Neuropathol Commun ; 12(1): 52, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576010

RESUMO

The transcellular propagation of the aberrantly modified protein tau along the functional brain network is a key hallmark of Alzheimer's disease and related tauopathies. Inoculation-based tau propagation models can recapitulate the stereotypical spread of tau and reproduce various types of tau inclusions linked to specific tauopathy, albeit with varying degrees of fidelity. With this systematic review, we underscore the significance of judicious selection and meticulous functional, biochemical, and biophysical characterization of various tau inocula. Furthermore, we highlight the necessity of choosing suitable animal models and inoculation sites, along with the critical need for validation of fibrillary pathology using confirmatory staining, to accurately recapitulate disease-specific inclusions. As a practical guide, we put forth a framework for establishing a benchmark of inoculation-based tau propagation models that holds promise for use in preclinical testing of disease-modifying drugs.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Modelos Animais de Doenças , Tauopatias/patologia , Proteínas tau/metabolismo , Encéfalo/patologia
18.
Alzheimers Res Ther ; 16(1): 71, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576025

RESUMO

BACKGROUND: The aggregation and spread of misfolded amyloid structured proteins, such as tau and α-synuclein, are key pathological features associated with neurodegenerative disorders, including Alzheimer's and Parkinson's disease. These proteins possess a prion-like property, enabling their transmission from cell to cell leading to propagation throughout the central and peripheral nervous systems. While the mechanisms underlying their intracellular spread are still being elucidated, targeting the extracellular space has emerged as a potential therapeutic approach. The glymphatic system, a brain-wide pathway responsible for clearing extracellular metabolic waste from the central nervous system, has gained attention as a promising target for removing these toxic proteins. METHODS: In this study, we investigated the impact of long-term modulation of glymphatic function on tau aggregation and spread by chronically treating a mouse model of tau propagation with a pharmacological inhibitor of AQP4, TGN-020. Thy1-hTau.P301S mice were intracerebrally inoculated with tau into the hippocampus and overlying cortex, and subsequently treated with TGN-020 (3 doses/week, 50 mg/kg TGN-020, i.p.) for 10-weeks. During this time, animal memory was studied using cognitive behavioural tasks, and structural MR images were acquired of the brain in vivo prior to brain extraction for immunohistochemical characterisation. RESULTS: Our findings demonstrate increased tau aggregation in the brain and transhemispheric propagation in the hippocampus following the inhibition of glymphatic clearance. Moreover, disruption of the glymphatic system aggravated recognition memory in tau inoculated mice and exacerbated regional changes in brain volume detected in the model. When initiation of drug treatment was delayed for several weeks post-inoculation, the alterations were attenuated. CONCLUSIONS: These results indicate that by modulating AQP4 function and, consequently, glymphatic clearance, it is possible to modify the propagation and pathological impact of tau in the brain, particularly during the initial stages of the disease. These findings highlight the critical role of the glymphatic system in preserving healthy brain homeostasis and offer valuable insights into the therapeutic implications of targeting this system for managing neurodegenerative diseases characterized by protein aggregation and spread.


Assuntos
Doença de Alzheimer , Sistema Glinfático , Niacinamida/análogos & derivados , Tiadiazóis , Camundongos , Animais , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Proteínas tau/metabolismo
19.
Commun Biol ; 7(1): 251, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429335

RESUMO

Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease. Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.


Assuntos
Cromatina , Proteínas tau , Humanos , Cromatina/química , Cromatina/metabolismo , DNA/metabolismo , Heterocromatina , Nucleossomos , 60422 , Fosforilação , Proteínas tau/química , Proteínas tau/metabolismo
20.
Clin Transl Med ; 14(3): e1623, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488468

RESUMO

BACKGROUND: Alzheimer's disease (AD) and related Tauopathies are characterised by the pathologically hyperphosphorylated and aggregated microtubule-associated protein Tau, which is accompanied by neuroinflammation mediated by activated microglia. However, the role of Tau pathology in microglia activation or their causal relationship remains largely elusive. METHODS: The levels of nucleotide-binding oligomerisation domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) acetylation and inflammasome activation in multiple cell models with Tau proteins treatment, transgenic mice with Tauopathy, and AD patients were measured by Western blotting and enzyme-linked immunosorbent assay. In addition, the acetyltransferase activity of Tau and NLRP3 acetylation sites were confirmed using the test-tube acetylation assay, co-immunoprecipitation, immunofluorescence (IF) staining, mass spectrometry and molecular docking. The Tau-overexpressing mouse model was established by overexpression of human Tau proteins in mouse hippocampal CA1 neurons through the adeno-associated virus injection. The cognitive functions of Tau-overexpressing mice were assessed in various behavioural tests, and microglia activation was analysed by Iba-1 IF staining and [18F]-DPA-714 positron emission tomography/computed tomography imaging. A peptide that blocks the interaction between Tau and NLRP3 was synthesised to determine the in vitro and in vivo effects of Tau-NLRP3 interaction blockade on NLRP3 acetylation, inflammasome activation, microglia activation and cognitive function. RESULTS: Excessively elevated NLRP3 acetylation and inflammasome activation were observed in 3xTg-AD mice, microtubule-associated protein Tau P301S (PS19) mice and AD patients. It was further confirmed that mimics of 'early' phosphorylated-Tau proteins which increase at the initial stage of diseases with Tauopathy, including TauT181E, TauS199E, TauT217E and TauS262E, significantly promoted Tau-K18 domain acetyltransferase activity-dependent NLRP3 acetylation and inflammasome activation in HEK293T and BV-2 microglial cells. In addition, Tau protein could directly acetylate NLRP3 at the K21, K22 and K24 sites at its PYD domain and thereby induce inflammasome activation in vitro. Overexpression of human Tau proteins in mouse hippocampal CA1 neurons resulted in impaired cognitive function, Tau transmission to microglia and microgliosis with NLRP3 acetylation and inflammasome activation. As a targeted intervention, competitive binding of a designed Tau-NLRP3-binding blocking (TNB) peptide to block the interaction of Tau protein with NLRP3 inhibited the NLRP3 acetylation and downstream inflammasome activation in microglia, thereby alleviating microglia activation and cognitive impairment in mice. CONCLUSIONS: In conclusion, our findings provide evidence for a novel role of Tau in the regulation of microglia activation through acetylating NLRP3, which has potential implications for early intervention and personalised treatment of AD and related Tauopathies.


Assuntos
Doença de Alzheimer , Inflamassomos , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Camundongos Transgênicos , Acetiltransferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...